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terms of repeatability and performance on large-scale image search. Medical 
image analysis is the focus of [99]
and [100]. In [99], an efficient image retrieval model based on iterative tex-
ture block coding tree is proposed. [100] proposes an approach for efficiently 
addressing the problem of manual annotation of large-scale medical video 
collections, and specifically focuses on X-ray stereo video data. Authors pro-
pose an efficient multi-marker tracking method that is able to highly acceler-
ate the annotation process. Efficient distance calculation in Big Media Data 
based on hashing is the focus of [101] and [102]. Specifically, [101] proses a 
new hashing technique that can efficiently minimize distances in both the 
input and binary (hashing) space, leading to better hashing description. [102] 
proposes a hashing method that can be directly applied on raw image data 
and, thus, optimize both image description and representation for hash-
based distance calculation. Finally, a new large-scale data set for spontane-
ous and multimodal affect analysis is introduced in [103].
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frameworks in order to handle large-scale datasets. For example, a distribut-
ed approach that can work with any serial clustering algorithm entails using 
the serial algorithm on data subsets, then merging the clusters [77].
The MapReduce distributed programming model [78] was invented by 
Google, specifically for handling extremely big datasets. It was inspired by 
the corresponding map and reduce primitives offered by functional program-
ming languages, such as Lisp. In general, it consists of two steps. The first 
one, is applying a function on all the elements separately (Map) and the sec-
ond one is collecting the results, using a commutative and associative opera-
tion (Reduce). An advantage of this model, over using a standard Message 
Passing Interface system, is that the programmer does not have to handle the 
low-level details of an implementation, e.g., data distribution to the worker 
nodes, faulttolerance, or load balancing, as tools for writing high-level pro-
grams for clusters do exist. While it may not provide a suitable solution for 
every possible problem, the MapReduce model particularly lends itself to 
problems that involve running simple operations on a large number of ele-
ments.
The Apache Spark cluster computing framework [79] builds upon Hadoop, 
in order to improve computation speed and is also compatible with HDFS. 
Its advantages over Hadoop include its ability to create and operate on more 
complex Directed Acyclic Graph (DAG) scheduling for tasks than Hadoop’s 
two-stage MapReduce DAG scheduling and the ability to cache data in the 
distributed memory.
Nowadays, the big impact on Big Data analytics has been caused by the exten-
sive use of Graphics Processing Units (GPU) for parallel computing. Indeed, 
the GPU processing allowed for training very deep neural networks for solv-
ing various learning tasks with very largescale datasets even in one worksta-
tion that has multiple GPUs available.
Several programming frameworks have been released in order to make the 
training and deployment of such deep learning models easy (e.g. TensorFlow, 
Caffe, Theano, Torch, etc.).

5. Data collections
While the size of data being available everyday becomes enormously big, their 
practical value for applying machine learning models is limited. This is due 
to the fact that most of this data is released without annotation and even un-
structured. For this reason, the collection of large and annotated data sets is 
of significant importance. This is due to the importance of exploiting domain 
knowledge during the model selection and training process. Existing datas-
ets target the problems of generic object and scene analysis [80–82], visual 
question generation and answering [83,84], facial image analysis [85–88], 
person detection [89], human action recognition [90–94], as well as datasets
targeting applications involving media data analysis in other scientific fields 
[95–97].

6. The special issue
In this context, the current Special Issue on Big Media Data Analysis includes 
works on generic image description, medical image and video analysis, dis-
tance calculation acceleration and data collection. Specifically, an analysis 
of local image description is provided in [98]. The authors provide an ex-
perimental analysis of many (standard and more recent) local descriptors in 
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However, in the case of Big Media Data Analysis, the application of standard 
kernel-based learning is difficult. This is due to the high space and time com-
plexities of standard kernel based learning approaches, which typically are 
quadratic and cubic functions of the cardinality of the training data. Thus, 
for Media Data Analysis problems involving hundreds of thousands (or even 
millions) of samples, the use of standard kernel-based learning is impracti-
cal. However, they can be applied in the context of Big Data by exploiting 
Divide and Conquer strategies [32–34]. According this, the Big Data problem 
is divided, in some optimal manner, to smaller sub-problems where the ap-
plication of standard kernel-based learning can be efficiently applied.
In order to make the application of kernel-based learning approaches in large 
problems possible, approximate learning schemes have been proposed. The 
main idea behind these schemes is to keep as much information as possible, 
while considerably reducing the size of the model.
In order to do so, three approaches have been proposed, i.e. based on low-
rank approximation of the corresponding kernel matrix [35–37], based on a 
reduced kernel space definition [38–44] and based on a randomized kernel 
space definition [45–49]. A review of these three approximate kernel-based 
learning approaches can be found in [50].
Other types of models, widely adopted in Big Media Data Analysis problems, 
are those based on iterative optimization. The most important such models 
are those exploiting neural network topologies [51–55].
Neural network models have received enormous attention during the last 
years due to their ability to be applied on raw (image/video) data and learn 
data representations of increased level of abstraction, a paradigm usually ref-
ereed to as Representation Learning [56–58]. 
Instead of adopting human-made data representations, Representation 
Learning defines the optimal (according to a given criterion) representation
based on training data, thus, achieving state-of-the-art performance in nu-
merous research problems, including object detection and recognition [59], 
image and text retrieval [60] and face and action recognition [61–63].
Two neural network topologies that have been widely used in Big Media Data 
Analysis problems are Convolutional Neural Networks (CNNs) [56] and Re-
current Neural Networks (RNNs) (usually implemented by using the Long-
Short Term Memory network architecture [64]). CNNs, taking as input raw 
image/video data and optimizing both the data representation and classifica-
tion tasks in a combined way, have been shown to achieve excellent perfor-
mance in many Media Data Analysis problems, including object detection/
recognition and scene analysis [65–69] and activity recognition [70]. RNNs 
are more suitable in modeling data in which the time dimension contains 
significant information, like image and video analysis [71–73], action recog-
nition [74] and visual question answering [75].

4. Big Data management and analytics
Distributed computing can provide the means to handle problems on very 
large datasets that would otherwise be almost impossible to solve [76]. It pro-
vides virtually limitless memory and processing power. 
Provided that a task can be split into many independent subtasks, then it can 
theoretically be performed in a reasonable amount of time, regardless of the 
data size, given enough processing units. Thus, many machine learning and 
pattern recognition algorithms can be implemented in distributed computing 
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ing and Pattern Recognition, and Big Data Management and Analytics. Since 
it involves processes belonging to all these research topics, their distinction 
within the concept of Big Media Data Analysis E-mail addresses: alexandros.
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is unclear. In the following, we provide a comprehensive discussion on select-
ed topics of these fields, followed by the introduction of the works included 
in this Special Issue.

2. Image/video analysis and computer vision 
The amount of images and videos available every day is growing at an expo-
nential rate. In order to be successfully used for analysis, such images and 
videos need to be pre-processed for noise removal and enhancement [1]. 
Depending on the task under consideration, several image processing steps 
need to be applied, including the calculation of edges [2] and optical flow [3], 
depth and/or disparity estimation (in the cases where depth sensors or stereo 
cameras are available) [4] and color normalization [5].
In order to efficiently process large collections of images, data need to be re-
duced by focusing on a part of it which is more important for the given task. 
Image segmentation is used in order to split the image in parts according to 
their similarity [6,7]. At a higher level, semantic image segmentation identi-
fies locations in an image that are important according to the task semantics 
[8]. In this context, face detection identifies image locations depicting human 
faces [9–11], while salient object segmentation identifies image locations that 
are plausible to the human eye [12,13]. Given such semantic image locations, 
higher level tasks like face recognition [14,15], facial expression and action 
recognition [16–18] and object recognition [19] can be applied. These con-
cepts have been also extended in the analysis of videos, by applying a spatio-
temporal analysis [20]. Large scael image and video retrieval [21] is another 
task closely related to big media analysis since the datasets used on this task 
are usually huge.
Image/video locations description, e.g. by exploiting local descriptors on lo-
cal neighborhoods of Interest Points [22,23], is another processing step to-
wards the application of high level image analysis and computer vision tasks, 
like object tracking [24] and human behavior analysis. Human behavior 
analysis includes the tasks of human detection [25], identification [26] and 
the recognition human actions [27,28]. It has been heavily researched dur-
ing the last two decades due to its importance in many application scenarios 
involving Big Media Data, like video surveillance, security, human–computer
interaction and entertainment [29].

3. Machine learning and pattern recognition
Big Media Data Analysis inevitably involves the understanding of visual con-
tent. For many Media Data Analysis problems, it has been shown that the use 
of linear models leads to inferior performance, compared to nonlinear ones. 
This is why, during the last decades when large annotated data sets were not 
available, research in these problems was primarily focused on the applica-
tion of nonlinear models, like kernel-based learning [30,31].
Kernel-based learning approaches are still now widely adopted in many 
small- and medium-scale classification problems due to their excellent per-
formance, theoretical foundation and easy implementation. 
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abstract
In this editorial a short introduction to the special issue on Big Me-
dia Data Analysis is given. The scope of this Editorial is to briefly 
present methodologies, tasks and applications of big media data 
analysis and to introduce the papers of the special issue. The special 
issue includes six papers that span various media analysis applica-
tion areas like generic image description, medical image and video 
analysis, distance calculation acceleration and data collection.
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1. Introduction
Recent advances in consumer electronics, such as digital cameras, smart-
phones and depth sensors, as well as the daily use of social media and image/
video sharing platforms have led to an explosion of digital media data, i.e. 
images and videos, captured every day. The analysis of such large sets of data 
(usually referred to as Big Data) has the potential to reveal patterns, trends 
and rules that would have been impossible to observe with smaller datasets 
used only few years ago. This potential of Big Data has led to increased inter-
est from both the scientific community and industry. On the one hand, pro-
cessing and analyzing such large collections of data generate new challenges 
that need to be appropriately addressed while, on the other hand, successful 
handling and analysis of Big Data leads to better prototypes and products.
Two properties of Big Media Data make the application of standard state-
of-the-art pattern recognition methods prohibitive, are its cardinality and 
dimensionality. Moreover, most of such data is released without annotation 
and even unstructured making the application of standard data processing 
approaches in this context is prohibitive. In this context, there is an increas-
ing interest in devising new methodologies that are able to efficiently process 
and analyze large collections of data, as well as in collecting large and anno-
tated data sets that can be used in order to adapt generic Machine Learning 
methodologies using domain knowledge and train models to be used in real 
applications.
Big Media Data Analysis is a multi-disciplinary research field, including top-
ics of classical Image and Video Analysis, Computer Vision, Machine Learn-


